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Abstract. We investigate the winding angle and mean square end-to-end distance of lattice 
trails on a square lattice, by both exact enumeration and Monte Carlo methods. We find 
similar behaviour to that of self-avoiding walks, to the extent that the complete distribution 
is found to agree with the recent exact calculation of the winding-angle distribution function 
for self-avoiding walks by Duplantier and Saleur, who found a Gaussian distribution. The 
exponent Y was found to be indistinguishable from $. 

The last four years has seen a spate of interest in such geometrical properties as the 
winding angle of self-avoiding lattice walks (SAW). This property is of interest both 
as a measure of the geometry of the walk, and as a model of polymeric entanglement. 
For the related problem of Brownian motion in the plane Spitzer (1958) first obtained 
the winding-angle distribution. He found that the probability distribution at time t 
satisfies asymptotically as t + CO a Cauchy law 

p t ( e )  =ln(t)/[82+(ln(t)/2)2].  (1) 
This distribution displays certain unusual features, notably infinite moments of all 
orders. This is because Brownian motion will return arbitrarily close to the origin, 
where the angle varies rapidly. Excluding the neighbourhood of the origin changes 
the distribution function dramatically; the new distribution function depends on the 
value of the exclusion (Rudnick and Hu 1987, 1988, Pitman and Yor 1986, Le Gall 
and Yor 1987). 

For self-avoiding walks (SAW), however, the origin is automatically excluded by 
the self-avoiding constraint. Fisher et aZ(1984) first studied the winding-angle distribu- 
tion for square lattice SAW by defining the winding angle 8, measured with respect to 
the direction of the first step. The origin of a polar coordinate system is taken as the 
origin of the walk, and the first step is directed along the x axis. As the walk progresses, 
it passes through points with coordinates (rk, 8k), and at each step the angular coordi- 
nate changes by an amount ABk from the previous step. This increment may be positive 
or negative. The final value after N steps is denoted O N ,  and may be of either sign. 
By symmetry, it is clear that the odd moments of the distribution (if they are finite) 
vanish identically, (8',k-')=O, while the even moments are positive. Fisher et a1 
calculated the second and fourth moments exactly for N S 21 for square lattice SAW, 

and obtained Monte Carlo estimates of the second moment for N up to 160. 
Arguing by analogy with Spitzer's (1958) result for planar Brownian motion, in 

which the scale of 8 grows as In t (although the moments are infinite), they suggested 
that 

(e$ ) -  ak[ln(N/bk)]2k'k, (2) 
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Their analysis is quite consistent with this assumption, and yielded the estimates 
b l= l .4 ,  b2=2.3, ~ 1 = 0 . 6 1 ~ O o . 0 7  and I4,=0.52*0.04. The ratio 

RN = (ek)/(e?V)2 (3) 
was found to lie between 2.9 and 3.2, which suggested a Gaussian distribution, for 
which this ratio is exactly 3, while the two 'exponents' 14' and (CI2  are then exactly 4. 
Finally, they provided heuristic scaling arguments that supported these simple rational 
exponents. 

Rudnick and Hu (1988) applied renormalisation group arguments to this problem, 
and obtained an E expansion in which a (4- &)-dimensional walker of N steps wraps 
around a (2 - &)-dimensional rod. To first order in E they find a Gaussian distribution 

P N ( e )  =exp[-02&/8 l n ( N ) ] / ( 8 ~  1n(N)/&)'I2 (4) 

so that 8 scales as (In N)'12, compared with In N for ordinary random walks (ORW).  

However, they also suggested that the crossover from ORW behaviour to SAW behaviour 
will only be seen for very large N, of order exp( 16/&). For d = 2 this gives a value of 
N around 3000 steps. 

Very recently, Duplantier and Saleur (1988) have obtained the exact probability 
distribution for this problem in two dimensions using Coulomb-gas techniques and 
conformal invariance. They find the exact probability distribution to be 

p N ( e )  = exp[-e2/4 I ~ ( N ) ] / [ ~ T  l n ( ~ ) I l / ~  ( 5 )  

in the large-N limit, which is in precise agreement with the renormalisation group 
result when E = 2. The results of Fisher et a1 are also confirmed by this exact result. 

In this paper we have studied lattice trails by both series analysis and Monte Carlo 
methods. Lattice trails are a superset of SAW. They are connected paths on an 
underlying lattice with the restriction that bonds cannot be multiply occupied (for SAW 

the restriction applies to sites). It is believed that they belong to the same universality 
class as SAW (Guttmann 1985a, b, Shapir and Oono 1984). We have enumerated lattice 
trails on the square lattice to 22 steps and on the triangular lattice to 15 steps, and 
calculated both the second and fourth moment of the winding angle, as well as the 
mean square end-to-end distance. In order to avoid difficulties with the definition of 
the distribution function, we have excluded the point at the origin. (While this exclusion 
is automatically applied for SAW by their constraint, for trails it has to be specifically 
invoked.) Our initial analysis of the exact data indicated that the series were too short 
for an accurate assessment of the winding angle. This is consistent both with the 
experience of the study in Fisher et a1 of the winding angle distribution of SAW and 
with our earlier study of critical exponents for trails (Guttmann 1985). In addition to 
these exact enumerations, we have performed high-precision Monte Carlo calculations 
on longer trails. We have used the fixed-N 'pivot' algorithm, originally invented by 
La1 (1969), but systematically analysed and applied to SAW by Madras and Sokal 
(1988). For various step lengths up to 512, we have generated between two and ten 
million independent realisations of N-step square lattice trails, and used these data 
to estimate the second and fourth moment of the winding angle and the mean square 
end-to-end distance. Our raw data are summarised in tables 1 and 2. 

As observed in our earlier studies of lattice trails (Guttmann 1985a, b, Guttmann 
and Osborn 1988), and as noted above, the asymptotic regime for trails appears to 
correspond to larger N values than for SAW, and for that reason longer walks were 
considered necessary. This observation is borne out by the results shown in figure 1, 
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Table 1. Series data for the mean square end-to-end distance and the second and fourth 
moments of the winding angle distribution. 

Square lattice 
1 c, I: R:  P 0:. I: 8: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

1 
3 
9 

25 
75 

211 
609 

1703 
4853 . 

13 531 
38 229 

106 227 
298 257 
827 235 

2 312 077, 
6 400 035 

17 828 445 
49 275 803 

136 899 957 
377 884 807 

1047 617 005 
2888550643 

1 
8 

41 
176 
683 

2 492 
8 705 

29 480 
97 389 

315 668 
1 007 069 
3 171 288 
9 876 033 

30 468 380 
93 222 341 

283 200 848 
854 865 749 

2 566034164 
7 663 397 997 

22 783 089 464 
67453427149 

198963085748 

1.233 700 550 136 169 
8.246 235 188 499 534 
2.964 908 275 147 875 x 10' 
1.105 575 468 731 198 x lo2 
3.515 609 500 020 143 x io2 
1.170 218 417 408 69,5 X lo3 
3.546 605 4'19 613 297 x lo3 
1.112 521 528615 170X lo4 
3.280 633 531 874 207 X lo4 
9.969 845 874 482 610 X lo4 
2.892 884 195 446 676 X lo5 
8.594 631 666 516 479 X lo5 
2.468 920672 755 189 x lo6 
7.223 355 590 262 998 x lo6 
2.058 750 436 722 140X lo7 
5.956 664 327 344 672 X lo7 
1.687 956 886 786 469 x lo8 
4.842 728 520 787 489 x lo8 
1.366 057 174 980 303 X lo9 
3.893 547 479 493 469 X lo9 
1.094 297 521 672 476 x 10" 

7.610085 237 031 440x 10' 
1.536 604 804 392 356 x 10' 
9.397 021 962 112 685 x 10' 
4.887 465 204 442 500 x 10' 
1.848 213 695 164 414 X lo3 
7.312 949 097 689 575 X lo3 
2.460 242 390 866 012 X lo4 
8.686 860 160 076 602 X lo4 
2.710 539 893 108 322 X lo5 
8.977 879 585 201 158 X lo5 
2.712 762 509 802 989 x lo6 
8.578 201 955 994 304 x lo6 
2.545 553 853 077 603 x lo7 
7.814 121 183 255 6 5 2 ~  lo7 
2.286 281 912 098 709 x 10' 
6.874 193 351 226 631 x lo8 

5.897 804 479 985 227 x lo9 
1.695 901 548 698 672 x 10" 
4.964 030 792 533 835 x 10'' 
1.418 891 752 502 458 x 10'' 

1.991 771 9 8 7 0 1 0 1 4 6 ~  lo9 

Triangular lattice 
I Cl . Z R: x e: I e: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
5 

23 
111 
529 

2 491 
11 713 
54 909 

256 525 
1 195 581 
5 560 651 

25 813 167 
119 632 91 1 
553 646 165 

2558871815 

1 
12 
97 

662 
4 135 

24 456 
139 239 
770 754 

4 175 107 
22 228 188 

116 679 945 
605 299 664 

3 108891493 
15831084734 
80015 551 627 

2.741 556 778 080 377 
2.284 776 527 367 392 x 10' 
1.402 348 288 354481 x lo2 
7.971 144 420 538 182 x lo2 
4.320 016 269 253 037 X lo3 
2.260 714 897 181 434 X lo4 
1.156 116 637 036 761 X lo5 
5.820 523 136 462 2 2 4 ~  lo5 
2.893 156381 315 119x lo6 
1.423 336 462 247 378 X lo7 
6.945 187 562 129 392 X lo7 

1.621 895 837 061 260 x lo9 
7.776 847 368 166 111 X lo9 

3.365 941 917 243 509 x lo8 

2.555 485 412 929 076 
5.874 332 123 949 410 x 10' 
5.615 130 441 555  297 x lo2 
4.042 186 212 783 137 X lo3 
2.583 797 362 537 017 X lo4 
1.540 960 807 475 497 X lo5 
8.701 782 993 030 423 x lo5 
4.753 612 876 624 779 x lo6 
2.530 565 280 365 292 x lo7 
1.319 500 859 890 217 x lo8 
6.771 353 467 107 957 x lo8 
3.430 648 565 608 888 X lo9 
1.719 565 053 231 131 x 10" 
8.541 967 880 088 253 x 10" 

in which we plot the dimensionless ratio R N ,  defined by (3), against 1/ N. The Gaussian 
limit of 3 is quite consistent with these results, but this is only clear for reasonably 
large values of N. This Gaussian behaviour suggests that the distribution function for 
trails is likely to be similar to that for SAW, and the rest of our analysis is designed to 
test this suggestion. In figure 2 we plot (6%) and ( against log N. These plots 
are seen to be totally linear to visual accuracy, and a least-squares straight line through 
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Table 2. Monte Carlo data for the mean square end-to-end distance and the second and 
fourth moments of the winding angle distribution. The data are uncertain in the last quoted 
digit. 

Number of 
1 configurations ( R : )  (0:) (6:) 

25 
30 
35 
40 
64 

100 
110 
120 
128 
130 
140 
150 
160 
192 
256 
320 
384 
512 

3 000 000 
3 000 000 
3 000 000 
3 000 000 
3 000 000 

10 000 000 
3 000 000 
3 000 000 

10 000 000 
3 000 000 
3 000 000 
3 000 000 
3 000 000 
3 000 000 
7 400 000 
3 000 000 
3 000 000 
2 100 000 

82.25 
106.7 
132.8 
160.9 
317.9 
611.0 
703.7 
800.4 
880.8 
900.6 

1005 
1113 
1225 
1605 
2464 
3438 
4512 
6944 

4.036 
4.370 
4.649 
4.903 
5.814 
6.678 
6.870 
7.041 
7.152 
7.174 
7.346 
7.460 
7.583 
7.963 
8.508 
8.962 
9.316 
9.911 

55.50 
64.60 
72.57 
80.17 

110.47 
143.17 
151.0 
158.1 
162.8 
163.9 
171.2 
176.5 
182.2 
200.1 
226.9 
249.9 
270.0 
303.6 

3.50 

RN 

3 . 2 5  

3 .00  

. . . . 
0 .  . 

. . . . . . 
I I I 1 
0 0.05 0.10 0.15 

1 / N  
Figure 1. RN = (6i , ) / (6k)2 plotted against 1/N. The approach to the Gaussian value of 
3.0 can be seen. 

these points has gradient 1.97 and intercept at N = 1 of -2.40 for the second moment, 
and gradient and intercept at N = 1 of 3.33 and -3.39 respectively for the square root 
of the fourth moment (using data for N a 6 4  only). 

In terms of (2), this gives for the parameters a and b 
a, = 1.97 b, = 3.37 

a,= 11.1 b, = 2.76. 

From ( 5 )  it follows that the constants a ,  and a2 are precisely 2 and 12 respectively for 
SAW. Our numerical results for trails are quite close to these exact values, particularly 
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Figure 2. A plot of (0;) (A) and (0$.,)”’ (0) against log N. 

the estimate of a, ,  and sufficiently close that agreement seems quite likely, from which 
would follow the result that the distribution function of winding angles for lattice trails 
is identical to that for SAW. 

Pursuing this possibility further, we show in figure 3 a histogram of winding angles 
obtained for 512 step trails, and a ‘best-fit’ Gaussian drawn through the points of the 
histogram. The Gaussian shape is extremely well reflected by the observed points. 
The ‘best-fit’ curve is found to be described by exp(-02/s In N ) ,  with s = 3.07 k0.06. 
This is significantly different from the ‘predicted’ value from (5) of 4.0, but this difference 
reflects the fact that even 512 step trails are a long way from the infinite limit. In 
support of this interpretation, we fitted our data for 128 and 256 steps to a ‘best-fit’ 
Gaussian and found s(  N = 128) = 2.76 and s ( N  = 256) = 2.92. A limit of 4.0 for this 
sequence as N approaches infinity appears entirely attainable. 

In the light of Rudnick and Hu’s comment that, for SAW one should only expect 
to see large-N behaviour for walks of several thousand steps, we also plotted ( 6 % )  
against (In N ) * ,  the expected ORW behaviour. The plot showed considerable curvature, 
suggesting that the crossover to SAW behaviour occurs at far smaller values of N than 
they predicted. This is consistent with the observations of Fisher et a1 for two- 
dimensional SAW and of Rudnick and Hu (1987) themselves for three-dimensional SAW. 

As part of our simulations, we also kept track of the mean square end-to-end 
distance. This study complements the earlier Monte Carlo study of lattice trails by 
Guttmann and Osborn (1988), using the Berretti-Sokal(l985) algorithm. In that study 
we estimated the connective constant and the critical exponent corresponding to the 
growth in the number of n-step trails, 7. In this study our trails are restricted to those 
which do not revisit the origin. However, in analogy with random walks, we expect 
this to be a vanishingly small proportion of the total number of trails, and so the 
exponent will remain unchanged. A least-squares straight line through a log-log plot 
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Figure 3. A histogram of winding angles for 512 step trails. N ( 6 )  is the fraction of walks 
in the interval 6 - A 6  to 6 + A6, where A 6  = 0.05. The Gaussian of best fit is shown as an 
unbroken curve. 

of our data, given in table 2, from 64-512 steps gives v = 0.742, data from 100-512 
gives v=O.744, data from 160-512 gives u=O.745, and data from 256-512 gives 
v = 0.747. These results are entirely consistent with the view that the model is in the 
same universality class as self-avoiding walks, for whch v = 0.75 exactly. Indeed, this 
is perhaps the strongest numerical evidence to date in support of that view. 

We conclude that the leading-order asymptotic behaviour of square lattice trails 
appears to be identical to that of square lattice SAW. It follows that the different 
constraint imposed on trails only affects the sub-dominant terms. That is to say, we 
might expect different correction-to-scaling exponents for trails, though our data are 
not sufficiently good to identify these sub-dominant terms. 
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